彭钎,董芳,韩维亮,韩维高,唐志诚,周智芳.低碳烷烃类VOCs催化燃烧耐SO2催化剂研究现状及进展[J].分子催化,2025,39(2):188-198 |
低碳烷烃类VOCs催化燃烧耐SO2催化剂研究现状及进展 |
Current Research Status and Progress of SO2 Resistant Catalysts for Catalytic Combustion of Low-carbon Alkane VOCs |
投稿时间:2024-12-10 修订日期:2025-01-20 |
DOI:10.16084/j.issn1001-3555.2025.02.009 |
中文关键词: 低碳烷烃VOCs 催化燃烧 耐硫性 催化剂 核壳结构 |
英文关键词:low-carbon alkane VOCs catalytic combustion sulfur resistance catalyst core-shell structure |
基金项目:甘肃省重点研发计划(23YFFA0012, 24YFFA011)、甘肃省自然科学基金项目(23JRRA638, 24JRRA066, 24JRRA047)、兰州市科技计划项目(2023-3-35)、兰州市城关区科技计划项目(2024-rc-4) [The Key Research and Development Program of Gansu Province (23YFFA0012, 24YFFA011), Province Natural Science Foundation of GanSu (23JRRA638, 24JRRA066, 24JRRA047), Science and Technology Program of Lanzhou City (2023-3-35), Science and Technology Program of Chengguan District (2024-rc-4)]. |
|
摘要点击次数: 5 |
全文下载次数: 0 |
中文摘要: |
低碳烷烃分子结构稳定, C—H键的断裂能垒较高, 被认为是VOCs中最难降解的成分之一. 催化燃烧技术因起燃温度低、适用范围广、无二次污染等特点已被广泛应用于VOCs的治理. 目前, 低碳烷烃类VOCs催化燃烧催化剂包括贵金属催化剂和非贵金属催化剂两大类. 在实际工业应用中, 含硫物种通常会与VOCs分子竞争吸附到催化剂活性位点上, 造成活性中心的失活. 某些工况下, 含硫物种甚至会与活性组分或载体发生反应生成硫酸盐, 造成不可逆的中毒. 本文针对催化剂表面硫中毒失活的机理进行了深入探讨, 总结了低碳烷烃VOCs催化燃烧贵金属和非贵金属催化剂的主要抗硫中毒策略, 包括构建双贵金属催化体系、元素掺杂、酸化处理以及构筑核壳结构催化剂等. 最后, 提出了具有工业应用前景的抗硫策略, 并对未来的发展方向进行了展望. |
英文摘要: |
Low carbon alkanes have stable molecular structures and high energy barriers for breaking C—H bonds, making them one of the most difficult components to degrade in VOCs. Catalytic combustion technology has been widely used in the treatment of VOCs because of its low ignition temperature, wide range of application, no secondary pollution and other characteristics. At present, catalytic combustion catalysts for low carbon alkane VOCs include two categories: noble metal catalysts and non- noble metal catalysts. However, in practical industrial applications, sulfur-containing species usually compete with VOCs molecules for adsorption onto the catalyst active sites, resulting in deactivation of the active center. In some cases, the sulfur-containing species may even react with the active components or supports to generate sulfates, resulting in irreversible poisoning. In this paper, the mechanism of sulfur poisoning and deactivation on the catalyst surface was discussed in depth, and the main anti-sulfur poisoning strategies for noble and non-noble metal catalysts for catalytic combustion of low-carbon alkane VOCs were summarized, including the construction of double noble metal catalytic system, elements doping, acidification treatment, and the construction of core-shell structure catalysts and so on. Finally, the most promising anti-sulfur strategies for application were proposed. |
HTML 查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|