王正超,黄晓卷,毕迎普,张亚军.探究异质结构BiOBr/ZnAl-LDH界面电荷迁移及其高效CO2还原活性[J].分子催化,2025,39(2):101-110 |
探究异质结构BiOBr/ZnAl-LDH界面电荷迁移及其高效CO2还原活性 |
Unveiling the Interfacial Charge Migration and Activity Origin of Heterojuncted BiOBr/ZnAl-LDH for Photocatalytic CO2 Reduction |
投稿时间:2025-03-11 修订日期:2025-03-20 |
DOI:10.16084/j.issn1001-3555.2025.02.001 |
中文关键词: 光催化 异质结构 BiOBr/ZnAl-LDH 界面电荷迁移 CO2还原 |
英文关键词:photocatalysis heterostructure BiOBr/ZnAl-LDH interfacial charge migration CO2 reduciton |
基金项目:国家自然科学基金(21832005, 22472183, 22072168, 22002175); 中国科学院兰州化学物理研究所重大项目(ZYFZFX-3); 甘肃省重大科技专项项目(22ZD6GA003); 中国科学院西部之光“西部青年学者”和中国科学院西部之光联合基金(xbzg-zdsys-202209)[The National Natural Science Foundation of China (21832005, 22472183, 22072168, 22002175); Major Program of the Lanzhou Institute of Chemical Physics, CAS (ZYFZFX-3); Major Science and Technology Projects in Gansu Province (22ZD6GA003); The CAS “Light of West China” Program and West Light Foundation of The Chinese Academy of Sciences (xbzg-zdsys-202209) ]. |
|
摘要点击次数: 11 |
全文下载次数: 0 |
中文摘要: |
异质结构光催化材料具有高效的电荷转移路径, 在光催化领域得到了广泛的研究及应用, 但其在光催化CO2还原过程表界面电荷转移动力学行为及其表界面化学组分演变过程却鲜有报道. 我们采用原位X射线光电子能谱仪和原位红外光谱相结合的方式, 深入探究了异质结构BiOBr/ZnAl-LDH界面电荷转移及其在光催化CO2还原过程中表界面化学组分动态演变. 研究发现: 在基态条件下CO2吸附并键合于BiOBr中的Bi活性位, 导致Bi—*CO2和Bi—*CO物种出现, 而H2O分子能够吸附在ZnAl-LDH中的Zn活性位上. 当光辐照于样品表面, Bi—*CO2峰显著降低, Bi—*CO明显升高, 说明CO2分子在Bi活性位发生活化断键; 而在Zn位上H2O峰下降, OH峰升高, 表明H2O分子在Zn活性位发生氧化解离来提供质子. 活性测试结果表明BiOBr/ZnAl-LDH的CO析出速率为46.03 μmol·g-1·h-1, 相比于ZnAl-LDH (6.88 μmol·g-1·h-1)和BiOBr (21.58 μmol·g-1·h-1)分别提升了6.7和2.1倍. 该研究工作为异质结构光催化材料高效CO2还原提供了重要研究思路. |
英文摘要: |
Heterostructured photocatalytic materials with efficient charge transfer pathways have been widely studied and applied in the field of photocatalysis. However, there are few reports on the interfacial charge transfer kinetics and the evolution of surface/interface chemical compositions during the photocatalytic CO2 reduction process. In this study, we systematically investigated the interfacial charge migration and dynamic evolution of surface/interface chemical compositions of BiOBr/ZnAl-LDH during the photocatalytic CO2 reduction process by combining in-situ X-ray photoelectron spectroscopy (IS-XPS) and in-situ Fourier transform infrared spectroscopy (IS-DRIFTS). The results show that under the ground state conditions, CO2 is adsorbed and bonded to the Bi active sites in BiOBr, resulting in the appearance of Bi—*CO2 and Bi—*CO species, while H2O molecules can be adsorbed at the Zn active sites in ZnAl-LDH. When light irradiates the sample surface, the peak of Bi—*CO2 significantly decreases, and the peak of Bi—*CO obviously increases, indicating the activation and bond breaking of CO2 molecules at the Bi active sites; while the peak of H2O at the Zn site decreases, and the peak of OH increases, indicating the oxidative dissociation of H2O molecules at the Zn active sites providing protons. The activity test results show that the CO production rate of BiOBr/ZnAl-LDH is 46.03 μmol·g-1·h-1, which is 6.7 times higher than that of ZnAl-LDH (6.88 μmol·g-1·h-1) and 2.1 times higher than that of BiOBr (21.58 μmol·g-1·h-1). This research provides important insights for the efficient CO2 reduction of heterostructured photocatalytic materials. |
HTML 查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|