高慧影,黄晓卷,张亚军,毕迎普.原位观测Bi-Bi2WO6表面化学态演变促进光催化CO2还原[J].分子催化(中英文),2025,39(3):199-207 |
原位观测Bi-Bi2WO6表面化学态演变促进光催化CO2还原 |
In-situ Observation of Surface Chemical State Evolution in Bi-Bi2WO6 toward Enhanced Photocatalytic CO2 Reduction |
投稿时间:2025-03-11 修订日期:2025-03-21 |
DOI:10.16084/j.issn1001-3555.2025.03.001 |
中文关键词: 光催化 Bi-Bi2WO6 表面化学态 电荷迁移 CO2还原 |
英文关键词:photocatalysis Bi-Bi2WO6 surface chemical state charge migration CO2 reduction |
基金项目:国家自然科学基金(21832005, 22472183, 22072168, 22002175); 中国科学院兰州化学物理研究所重大项目(No.ZYFZFX-3); 甘肃省重大科技专项项目(22ZD6GA003); 中国科学院西部之光“西部青年学者”和中国科学院西部之光联合基金(xbzg-zdsys-202209)[The National Natural Science Foundation of China (21832005, 22472183, 22072168, 22002175); Major Program of the Lanzhou Institute of Chemical Physics, CAS (No. ZYFZFX-3); Major Science and Technology Projects in Gansu Province (22ZD6GA003); The CAS “Light of West China” Program and West Light Foundation of The Chinese Academy of Sciences (xbzg-zdsys-202209)]. |
|
摘要点击次数: 0 |
全文下载次数: 1 |
中文摘要: |
太阳能驱动的光催化CO2还原是生产高附加值燃料和化学品的有效策略之一, 然而该过程中电荷迁移动力学行为及其表面化学态动态演变过程却鲜有报道. 我们采用改进溶剂热法制备得到Bi-Bi2WO6光催化剂, 在可见光辐照下, 其CO2还原至CO活性(152.7 μmol·g-1·h-1)相比于原始Bi2WO6 (13.0 μmol·g-1·h-1)提升了11.7倍. 随后, 我们利用自主研发原位X射线光电子能谱系统探究了Bi-Bi2WO6在CO2光还原过程中的光生电荷转移及其表面化学态变化. 研究表明: CO2分子吸附于金属Bi位并从其上获取电子, 形成高价态Bi(3+x)+物种, 而供电子的H2O分子则吸附于Bi2WO6表面W位点, 导致W(6-x)+物种出现. 在辐照条件下, 吸附于金属Bi活性位的CO2分子发生质子化作用析出CO, H2O分子则在W位点发生解离生成OH-和H+, 为CO2还原提供质子源. 该工作为Bi2WO6基催化剂高效光催化CO2还原研究提供了重要的研究依据及思路. |
英文摘要: |
Solar-driven photocatalytic CO2 reduction has been regarded as an effective strategy to convert CO2 into value-added fuels or chemicals. However, the charge transfer dynamics and surface chemical state evolution during this process remain poorly understood. Herein, we developed a modified solvothermal method to synthesize Bi-Bi2WO6 hetero-junction for photocatalytic CO2-to-CO conversion, which demonstrated a remarkable 11.7-fold enhancement in CO production rate (152.7 μmol·g-1·h-1) compared to pristine Bi2WO6 (13.0 μmol·g-1·h-1) under visible light irradiation. Furthermore, the dynamic evolutions of surface active sites during CO2 reduction have been identified by in-situ X-ray photoelectron spectroscopy. Specifically, the CO2 adsorption focused on metallic Bi and Bi sites of Bi2WO6 to form high-valence transition states, and H2O adsorption on surface W sites of Bi2WO6 induces the low-valence transition states. Under light irradiation, the conversion of CO2 to CO focused on metallic Bi surfaces, while the H2O molecules dissociated into the OH- and H+ on W sites to provide proton. This work provides mechanistic insights into interfacial charge transfer and surface reconstruction processes in Bi2WO6-based photocatalysts, offering fundamental guidance for the rational design of high-performance CO2 reduction systems. |
HTML 查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|